Researchers from the University of Michigan have partnered with the Great Lakes Water Authority (GLWA), a public utility which serves almost 40% of Michiganders, to reduce combined sewer overflows through real-time sensing and dynamic control.
Greg Ewing
Sara Troutman
Detroit, like much of the United States, is served by Combined Sewer systems – rainwater runoff and domestic sewage use the same pipes. Due to many stressors, such as aging infrastructure, changing populations, and rapid development in the service area, the sewer and stormwater conveyance system is strained well beyond its design. In general, all the contents of these pipes are treated at a water treatment facility before being discharged. However, in cases of inclement weather such as rain storms, the sewers may run out of space for all the rainwater runoff and the regular sewage. As a result, the system has to discharge its excess, in this case into the Detroit River. When untreated sewage is discharged in this way, it is called a combined sewer overflow. Conventional wisdom is that to avoid combined sewer overflows, sewers must increase their capacity – in other words, MORE storage is needed for rainfall and sewage to occupy until it can be treated at a water treatment facility.
To combat these persistent untreated outflows, and with a vision to create more controlled inflows into the wastewater treatment facility, GLWA launched a project in late 2017 with the University of Michigan’s Real-Time Water Systems Lab lead by Branko Kerkez, Assistant Professor at the University of Michigan’s College of Engineering. The project was to investigate the application of real-time sensing and dynamic control on existing infrastructure for a much more cost effective problem solution.
Since construction of new Combined Sewer Outfall (CSO) basins (grey infrastructure) and green infrastructure (GI) installations may cost over a billion dollars, real-time control presents a great opportunity to stretch the performance of existing assets.
Using a series of sensors inside the sewer system that can track the sewer’s capacity at different locations, the research team demonstrated that GLWA’s current system can be better utilized to reduce the frequency and volume of Combined Sewer Overflows. In other words, they found that Combined Sewer Overflows have been occurring when additional sewer capacity is available. Rather than increasing the amount of storage with costly infrastructure improvements, the research team was able to demonstrate their ability to use a real-time control approach to significantly improve the existing GLWA wastewater and CSO management system by reducing both the occurrence of CSOs and peak flows going to the treatment facility. These benefits can be achieved without new construction, rather by relying entirely on existing infrastructure, which promises to free up significant capital savings for future investments. The team demonstrated that significant CSO reductions can be achieved – as much 100 million gallons per storm event – by using a cloud-hosted, market-based control algorithm that requires only measurements of water levels and flows at few locations in the sewer system. Unlike other control approaches, U-M’s approach can be implemented with a minimal number of sensors and can be modeled using existing stormwater (SWMM) models. This makes it possible for just about any community to adopt real-time control without expert knowledge. To communicate control recommendations from the controller to the stormwater operator, the team designed a decision support dashboard. The dashboard is web-based and not only gives real-time readouts of measurements from across the stormwater system, it also gives control recommendations to the user as determined by the market-based control algorithm. All algorithms, cloud infrastructure, and control models will be shared open source and available to the public free of cost.
This project was recognized during the Water Environment Federation national conference in 2018 (WEFTEC 2018) held in New Orleans. The team from Great Lakes Water Authority and the University of Michigan won first prize in the new “Leaders Innovation Forum for Technology (LIFT) Intelligent Water Systems Challenge”. The project earned the team a $25,000 prize from Xylem Inc. (Rye Brook, N.Y.). The proposed solution would enable Detroit’s current infrastructure to handle an estimated additional 378.5 million L (100 million gal) with projected savings of about $500 million.
The research team celebrates after winning the LIFT challenge.
The pink shaded region is GLWA's service extent, the blue lines indicate sewer extent, and the yellow dots indicate sensor and control locations.
Recommendations were developed to promote regional planning to ensure infrastructure investments are equitable and result in high-quality drinking water.
Learn MoreThe Urban Collaboratory is working with the USEPA and the Great Lakes Water Authority to remediate and restore the Rouge River.
Learn MoreThe MCFI will leverage research in water technology and work with stakeholders to translate research into practice, stimulate business growth and job creation.
Learn MoreA PFAS treatment approach for groundwater using low-temperature plasma with a concentration phase
Learn MoreA grassroots train-the-trainer program on how to install, operate and maintain faucet-mounted point-of-use filters to protect for lead in drinking water.
Learn MoreUsing big data, data mining, and artificial intelligence to improve performance of the highly advanced Grand Rapids Water Resource Recovery Facilities.
Learn MoreLimiting the volume of stormwater in the Detroit system to prevent untreated sewage from being released into the Detroit and Rouge Rivers.
Learn MoreImproving Benton Harbor’s aging water system using risk assessment and risk analysis techniques, as well as mobile sensors.
Learn MoreInvestigating the use of cutting-edge molecular tools that characterize and optimize water quality process performance.
Learn MoreOptimizing phosphorus removal at Detroit’s water treatment facility, to keep it out of lakes and rivers.
Learn MoreUsing wireless sensors to monitor water quality and flow conditions and to control drains to Ox Creek in Benton Harbor.
Learn MoreUsing autonomous sensors and valves to create “smart” stormwater systems to reduce flooding forecasting, and improve water quality.
Learn MoreUsing wearable-based technology to help seniors stay mobile and age in place, while avoiding exposure to falls and environmental risks or hazards.
Learn MoreRobots are anticipated to make the global construction industry safer and more attractive to workers, easing a worker shortage in the United States.
Learn MoreWhile parks are designed and managed to generate community benefits, there remains a need for tools that can more rigorously measure how communities use parks.
Learn MoreThe city of Benton Harbor wishes to transform Ox Creek into a residential, recreational and commercial centerpiece linking important segments of the community.
Learn MoreThe goal of this project is to develop a data-driven asset management framework that quantifies risk in the water distribution network for southeast Michigan.
Learn MoreThe University of Michigan is developing a structural reliability framework to quantify the probability of failure of pipe segments throughout the GLWA system.
Learn MoreThe Great Lakes Water Authority is looking for ways to rehabilitate large diameter water mains without actually having to dig up city streets.
Learn MoreMapping detailed geographies of digital access and exclusion across Detroit’s neighborhoods.
Learn MoreA major source of bridge deterioration requiring constant maintenance is mechanical expansion joints installed between adjacent simple span bridge decks.
Learn MoreStructural monitoring of highway retaining walls using remote sensing techniques to assess performance and prioritize infrastructure investments.
Learn MoreUsing remote sensing and security camera data to better understand how people are using the Detroit RiverFront Conservancy public spaces.
Learn MoreAssistant Professor, Civil and Environmental Engineering
Branko Kerkez an assistant professor in the Civil and Environmental Engineering department at the University of Michigan. His research interests include water, data, and sensors. He heads the Real-time Water Systems Lab, where his group is presently conducting fundamental research on “smart” water systems. Dr. Kerkez is the founder of Open-Storm.org, an open source consortium dedicated to freely sharing technologies and lessons for the sensing and control of water systems. He received his M.S. and Ph.D. in Civil and Environmental Engineering, and an M.S. in Electrical Engineering and Computer Science, all from UC Berkeley.
+ Improving Water Quality in Ox Creek
+ Demonstration Project for Real-Time Stormwater Control in Southeast Michigan